Keratin Protein-Catalyzed Nitroaldol (Henry) Reaction and Comparison with Other Biopolymers.

نویسندگان

  • Marleen Häring
  • Asja Pettignano
  • Françoise Quignard
  • Nathalie Tanchoux
  • David Díaz Díaz
چکیده

Here we describe a preliminary investigation on the ability of natural keratin to catalyze the nitroaldol (Henry) reaction between aldehydes and nitroalkanes. Both aromatic and heteroaromatic aldehydes bearing strong or moderate electron-withdrawing groups were converted into the corresponding β-nitroalcohol products in both DMSO and in water in the presence of tetrabutylammonium bromide (TBAB) as a phase transfer catalyst. Negligible background reactions (i.e., negative control experiment in the absence of keratin protein) were observed in these solvent systems. Aromatic aldehydes bearing electron-donating groups and aliphatic aldehydes showed poor or no conversion, respectively. In general, the reactions in water/TBAB required twice the amount of time than in DMSO to achieve similar conversions. Moreover, comparison of the kinetics of the keratin-mediated nitroaldol (Henry) reaction with other biopolymers revealed slower rates for the former and the possibility of fine-tuning the kinetics by appropriate selection of the biopolymer and solvent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new copper acetate-bis(oxazoline)-catalyzed, enantioselective Henry reaction.

A highly enantioselective, nitroaldol reaction catalyzed by a chiral Cu(II) bis(oxazoline) complex has been developed. The reaction scope includes both aromatic and aliphatic aldehydes (15 examples) affording products in good yields and enantioselectivities (87-94% ee). An X-ray structure of the catalyst has been provided along with a rationalization of the sense of asymmetric induction.

متن کامل

DFT study of the asymmetric nitroaldol (Henry) reaction catalyzed by a dinuclear Zn complex

We report the mechanism of asymmetric nitroaldol (Henry) reaction catalyzed by a dinuclear Zn complex using density functional theory. The experimentally proposed catalytic cycle is validated, in which the first step is the deprotonation of nitromethane by the ethyl anion of the catalyst, subsequently a C-C bond formation step, and then the protonation of the resulting alkoxide. Three mechanist...

متن کامل

Baker’s yeast catalyzed Henry reaction: Biocatalytic C-C bond formation

The C-C bond formation is an important reaction in organic synthesis to obtain value-added intermediates. Therefore, in this paper an attempt has been made to accelerate the Henry reaction (C-C bond formation) between aryl aldehydes and nitromethane using less expensive whole cell biocatalyst, baker’s yeast (BY). The scope of the methodology was also tested for the heteryl aldehyde i.e. 2-chlor...

متن کامل

C–C Bond formation catalyzed by natural gelatin and collagen proteins

The activity of gelatin and collagen proteins towards C-C bond formation via Henry (nitroaldol) reaction between aldehydes and nitroalkanes is demonstrated for the first time. Among other variables, protein source, physical state and chemical modification influence product yield and kinetics, affording the nitroaldol products in both aqueous and organic media under mild conditions. Significantl...

متن کامل

DNA-catalyzed Henry reaction in pure water and the striking influence of organic buffer systems.

In this manuscript we report a critical evaluation of the ability of natural DNA to mediate the nitroaldol (Henry) reaction at physiological temperature in pure water. Under these conditions, no background reaction took place (i.e., control experiment without DNA). Both heteroaromatic aldehydes (e.g., 2-pyridinecarboxaldehyde) and aromatic aldehydes bearing strong or moderate electron-withdrawi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 21 9  شماره 

صفحات  -

تاریخ انتشار 2016